35 research outputs found

    MLAMAN: a novel multi-level authentication model and protocol for preventing wormhole attack in mobile ad hoc network

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Wormhole attack is a serious security issue in Mobile Ad hoc Network where malicious nodes may distort the network topology and obtain valuable information. Many solutions, based on round trip time, packet traversal time, or hop-count, have been proposed to detect wormholes. However, these solutions were only partially successful in dealing with node high-speed mobility, variable tunnel lengths, and fake information by malicious nodes. To address those issues, this paper proposes a novel multi-level authentication model and protocol (MLAMAN) for detecting and preventing wormhole attacks reliably. MLAMAN allows all intermediate nodes to authenticate control packets on a hop-by-hop basis and at three levels: (1) the packet level where the integrity of the packets can be verified, (2) the node membership level where a public key holder-member can be certified, and (3) the neighborhood level where the neighborhood relationship between nodes can be determined. The novelty of the model is that it prevents malicious nodes from joining the network under false information and pretense. It detects wormhole nodes effectively under various scenarios including variable tunnel lengths and speeds of moving nodes. The effectiveness of our approach is confirmed by simulation results through various scenarios

    FAPRP: A Machine Learning Approach to Flooding Attacks Prevention Routing Protocol in Mobile Ad Hoc Networks

    Full text link
    © 2019 Ngoc T. Luong et al. Request route flooding attack is one of the main challenges in the security of Mobile Ad Hoc Networks (MANETs) as it is easy to initiate and difficult to prevent. A malicious node can launch an attack simply by sending an excessively high number of route request (RREQ) packets or useless data packets to nonexistent destinations. As a result, the network is rendered useless as all its resources are used up to serve this storm of RREQ packets and hence unable to perform its normal routing duty. Most existing research efforts on detecting such a flooding attack use the number of RREQs originated by a node per unit time as the threshold to classify an attacker. These algorithms work to some extent; however, they suffer high misdetection rate and reduce network performance. This paper proposes a new flooding attacks detection algorithm (FADA) for MANETs based on a machine learning approach. The algorithm relies on the route discovery history information of each node to capture similar characteristics and behaviors of nodes belonging to the same class to decide if a node is malicious. The paper also proposes a new flooding attacks prevention routing protocol (FAPRP) by extending the original AODV protocol and integrating FADA algorithm. The performance of the proposed solution is evaluated in terms of successful attack detection ratio, packet delivery ratio, and routing load both in normal and under RREQ attack scenarios using NS2 simulation. The simulation results show that the proposed FAPRP can detect over 99% of RREQ flooding attacks for all scenarios using route discovery frequency vector of sizes larger than 35 and performs better in terms of packet delivery ratio and routing load compared to existing solutions for RREQ flooding attacks

    Molecular Characterization of HIV-1 CRF01_AE in Mekong Delta, Vietnam, and Impact of T-Cell Epitope Mutations on HLA Recognition (ANRS 12159)

    Get PDF
    To date, 11 HIV-1 subtypes and 48 circulating recombinant forms have been described worldwide. The underlying reason why their distribution is so heterogeneous is not clear. Host genetic factors could partly explain this distribution. The aim of this study was to describe HIV-1 strains circulating in an unexplored area of Mekong Delta, Vietnam, and to assess the impact of optimal epitope mutations on HLA binding.We recruited 125 chronically antiretroviral-naive HIV-1-infected subjects from five cities in the Mekong Delta. We performed high-resolution DNA typing of HLA class I alleles, sequencing of Gag and RT-Prot genes and phylogenetic analysis of the strains. Epitope mutations were analyzed in patients bearing the HLA allele restricting the studied epitope. Optimal wild-type epitopes from the Los Alamos database were used as reference. T-cell epitope recognition was predicted using the immune epitope database tool according to three different scores involved in antigen processing (TAP and proteasome scores) and HLA binding (MHC score). with a Vietnamese specificity held by two different haplotypes. The percentage of homology between Mekong and B consensus HIV-1 sequences was above 85%. Divergent epitopes had TAP and proteasome scores comparable with wild-type epitopes. MHC scores were significantly lower in divergent epitopes with a mean of 2.4 (±0.9) versus 2 (±0.7) in non-divergent ones (p<0.0001).Our study confirms the wide predominance of CRF01_AE in the Mekong Delta where patients harbor a specific HLA pattern. Moreover, it demonstrates the lower MHC binding affinity among divergent epitopes. This weak immune pressure combined with a narrow genetic diversity favors immune escape and could explain why CRF01_AE is still predominant in Vietnam, particularly in the Mekong area

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: Implications for public health

    No full text
    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present

    Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: Implications for public health

    No full text
    Aedes albopictus is secondary to Aedes aegypti as a vector of dengue viruses (DENVs) in settings of endemicity, but it plays an important role in areas of dengue emergence. This study compared the susceptibility of these 2 species to DENV infection by performing 232 direct blood-feeding experiments on 118 viremic patients with dengue in Vietnam. Field-derived A. albopictus acquired DENV infections as readily as A. aegypti after blood feeding. Once infected, A. albopictus permitted higher concentrations of DENV RNA to accumulate in abdominal tissues, compared with A. aegypti. However, the odds of A. albopictus having infectious saliva were lower than the odds observed for A. aegypti (odds ratio, 0.70; 95% confidence interval, .52-.93). These results quantitate the susceptibility of A. albopictus to DENV infection and will assist parameterization of models for predicting disease risk in settings where A. albopictus is present

    Blockade of dengue virus transmission from viremic blood to Aedes aegypti mosquitoes using human monoclonal antibodies

    No full text
    Background Dengue is the most prevalent arboviral disease of humans. Virus neutralizing antibodies are likely to be critical for clinical immunity after vaccination or natural infection. A number of human monoclonal antibodies (mAbs) have previously been characterized as able to neutralize the infectivity of dengue virus (DENV) for mammalian cells in cell-culture systems. Methodology/Principle findings We tested the capacity of 12 human mAbs, each of which had previously been shown to neutralize DENV in cell-culture systems, to abrogate the infectiousness of dengue patient viremic blood for mosquitoes. Seven of the twelve mAbs (1F4, 14c10, 2D22, 1L12, 5J7, 747(4)B7, 753(3)C10), almost all of which target quaternary epitopes, inhibited DENV infection of Ae. aegypti. The mAbs 14c10, 747(4)B7 and 753(3)C10 could all inhibit transmission of DENV in low microgram per mL concentrations. An Fc-disabled variant of 14c10 was as potent as its parent mAb. Conclusions/Significance The results demonstrate that mAbs can neutralize infectious DENV derived from infected human cells, in the matrix of human blood. Coupled with previous evidence of their ability to prevent DENV infection of mammalian cells, such mAbs could be considered attractive antibody classes to elicit with dengue vaccines, or alternatively, for consideration as therapeutic candidates.</p
    corecore